Ignotus quería saber si Ana, su alumna predilecta, ya sabía escribir los números. Ana tomó una hoja y un lápiz y comenzó a escribirlos uno tras otro, sin dejar espacios entre ellos. Así:
1234567891011....
Cuando llegó a 11, se detuvo un momento, pensó, y siguió su lista así:
...131415161718
- ¡Ana! — interrumpió Ignotus. Olvidaste el 12. - Claro que no — respondió Ana disgustada. Está al comienzo de la lista. Sin prestar más atención, prosiguió lentamente escribiendo:
...19202122...
Hizo una breve pausa, de nuevo pensó un instante, y siguió:
...24252627282930...
Ignotus volvió a interrumpirla. - Ya entiendo — le dijo. No escribes tampoco el número 23 porque ya lo escribiste cerca del comienzo de la lista. - Sí, hay que ahorrar tiempo, papel y lápiz — le explicó, bastante aliviada de que su profesor finalmente la hubiera comprendido. Ignotus le propuso a Ana que llamaran a esos números repetidos, (como el 12, 23, 31, 34, etc.), los “números de Ana” y que esta hiciera una lista con ellos. ¿Te animas a realizar un programa que permita descubrir los números de Ana si comenzamos a escribir un cierto rango de números?
La entrada comienza con un entero c, en una sola línea, que indica la cantidad de casos a resolver. A continuación siguen c casos. Cada caso es descrito por una línea con dos números enteros positivos a y b, que indican el rango en el cual Ana debe escribir los números. (1 ≤ a ≤ b ≤ 1000).
Para cada caso, se debe imprimir la lista de los números de Ana, cada uno en una sola línea, ordenados de menor a mayor. En caso de que no haya ninguno, se debe imprimir 0. También, después del resultado de cada caso de prueba, se debe imprimir una línea en blanco. (Este detalle es importante. Un programa correcto puede ser rechazado por no imprimir esta línea en blanco).
3 1 10 1 20 10 35
0 12 21 31 32
#2014 #obi-final-nacional